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AWARDS ABSTRACT

The invention relates to providing periodic gain adjustment in plants

of irreducible order, n, as a way of modulating control energy to higher

frequencies and making the harmonics add in such a way that a nonminimum-

phase system appears to be minimum phase using a technique based on the

notion of a mathematical "lifting" of extended horizons in which a se-

rial-to-parallel conversion is performed on N>n liftings taken from the

control input and output signals, and mappings are considered between the

vectorized quantities. This lifting technique is also applicable to com-

munications for equalization of a nonminimum phase channel.

Referring to FIG. 1, an improved method for providing periodic gain

adjustment in plants of irreducible order, such as for control of

electrical, mechanical or chemical systems or for equalization of

communication channels, comprises the choosing of a horizon time N>n of

liftings in periodic input and output signal windows Pu and py, respec-
tively, where N is an integer chosen to define the extent (length) of each

of the windows Pu and py, and n is the order of the irreducible input/output

plant model given by an equation of the form

A(z-l)yl=B(z-1)ul

n

A(z-1)=l+_aiz-i; B(z-1)=Eb_z -i
i =i i =i

where polynomials A and B are relatively prime, such that the horizon time

for liftings have a total length N=m+E+p+q+2n-1, and in which the number

of elements a u in the liftings taken from the input signal is greater than

the number of elements oy in the liftings taken from the output signal for

output tracking in control systems and vice versa (Ou<_) for input tracking
in communication systems. The extended horizon liftings for output

tracking over a selected input signal window pu and a selected output

signal window py are of the form



N

F

m _ p n q n-I

pu=[0,...,0, i,...,i, p ,i,I,...,I, 0,...,0, 0,...,0]

m _ p q n-I n

_=[0,...,0, 0,...,0, p ,0,...,0, 0,...,0, i,I,...,I]

where m, _, p, n, q, and n-i are elements of the lifting, and m_O and _a0

are arbitrary, q=O, p e R p is an arbitrary (or null) 0-I vector chosen

identically in both Pu and py and n>O is the order of the irreducible plant.

If the system is obtained by zero-order hold digitization of a continuous-

time plant, the integer q_O can be chosen arbitrarily. Since there are m+_

zeros on the left in py and only m zeros on the left in Pu, the number of

elements a u is greater than a r for output tracking. For input tracking in

a communications system, the extended horizon liftings are of the same

general form, but now there are m+_ zeros on the left in Pu, and only m

zeros on the left in py so that the number of elements a u is less than ay.

FIG. 2 is a block diagram of a generalized lifting system model

G(pu,p. ) applicable to control systems in general. FIG. 3 illustrates
4' , •

graphlcally the determlnatlon of a small matrix H. from input and output

signal liftings in respective windows Pu and py. FIG. 4 is a block diagram
. . • , • T

of a generalized lifting system model under zero annlhllatlon condltlons BSu _0

and A(Sy)T=0. FIG. 5 is a block diagram of a zero annihilation periodic

(ZAP) control law having a closed-loop system arising from the output

tracking of extended horizon liftings. FIG. 6 is a pole-zero plot of a 12-

state nonminimum phase plant with a sampling interval T=0.025sec in which

poles are represented by "X" and zeros by "0." FIG. 7 is a graph of open-

loop output response of the plant in FIG. 6 to an initial condition. FIGs.

8a and 8b are graphs of respective output and input closed-loop response

of the plant in FIG. 6 using deadbeat control with Lozano's 2n-lifting

(au=ay) with a vibration damping objective. FIGs. 9a and 9b are graphs of

respective output and input response using ZAP control of FIG. 5 with an

extended horizon input lifting Pu defined by m=O, _=40, p=O, n=12, q=O,

N=63. In this case au=52 and ay=12, so that Ou>ay. FIG. i0 illustrates

application of the present invention to communications for equalizing a

nonminimum phase channel.

The novelty of the invention resides in the use of extended horizon

(window length) for periodic gain adjustments in control systems with

output tracking and for equalization of communication channels with input

tracking, coupled with other conditions that are similar for both output

tracking control and input tracking equalization of communication channels.
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ORIGIN OF INVENTION

The invention described herein was made in the performance

of work under a NASA contract, and is subject to the provisions

of Public Law 96-517 (35 USC 202) in which the contractor has

elected not to retain title.

I0

15

TECHNICAL FIELD

The invention relates to providing periodic gain adjustment in

control design as a way of modulating control energy to higher fre-

quencies and making the harmonics add in such a way that a nonmini-

mum-phase system appears to be minimum phase using a technique

based on the notion of a mathematical "lifting" in which a se-

rial-to-parallel conversion is performed on the control input and

output signals, and mappings are considered between the vectorized

quantities. This lifting technique is also applicable in communi-

cations for equalization of a nonminimum phase channel.

2O

BACKGROUND OF THE INVENTION

In the prior art, nonminimum-phase systems could

controlled by using low bandwidth, sluggish controllers.

only be

In lay-

man's terms, nonminimum-phase systems move in a direction initially
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opposite to the direction they are pushed. Such systems arise

when, for example, one attempts to dampen vibrations on a flexible

structure in optical instruments by acting at a location remote

from the flexible structure in the case of a "noncolocated" control

system.

Nonminimum-phase systems arise in many aerospace applications

of noncolocated control, such as spacecraft slewing, instrument

pointing/tracking, flexible robotics, acoustic systems, chemical

process control systems, compact disk controllers, floppy disk

controllers and even real-time equalization of nonminimum-phase

communication systems. An object of this invention is to achieve

high performance control for the class of nonminimum-phase systems

that encompasses these and other applications which are referred to

generically as "plants."

A Zero Annihilation Periodic (ZAP) control law was introduced

by the present inventor, David S. Bayard, in publications titled

"Globally stable adaptive periodic control," Jet Propulsion

Laboratory, Internal Document JPL D-9448, February 3, 1992 and

"Zero annihilation methods for direct adaptive control of

nonminimum-phase systems," Proc. Seventh Yale Workshop on Adaptive

and Learning Systems, Yale University, May 1992, for controlling

nonminimum-phase systems using stable inversion of the plant. The

general ZAP approach is based on the notion of a mathematical

"lifting" performed on the plant input and output signals with

mapping between the vectorized input and output quantities.
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A key property of the ZAP liftings which makes them so useful

is that the transmission zeros of the lifted and vectorized plant

input signal are annihilated (i.e., placed to the origin). This

zero-annihilation (ZA) property allows the vectorized plant signals

to be stably inverted using standard control methods. The result

is important to many areas of control, communications, and signal

processing where a stable plant inverse is often desired but not

possible due to nonminimum-phase restrictions.

In a paper by R. Lozano-Leal, "Robust adaptive regulation

without persistent excitation," IEEE Trans. Automatic Control, Vol.

34, pp. 1260-1267, December 1989, a multirate sampling method is

presented which allows stable inversion of any linear time-invar-

iant finite-order plant signal. Not surprisingly Lozano's lifting

has also been applied to developing stable adaptive control algo-

rithms for nonminimum phase systems. [Bayard, supra and Lozano-

Leal supra]. See also R. Lozano et al., "Singularly-free adaptive

pole placement using periodic controllers," IEEE Trans. Automatic

Control, Vol. 38, pp. 104-108, January 1993.

Lifting in this invention is an extension of the prior art

represented by Bayard, supra, and Lozano-Leal, supra, to "extended

horizons," i.e., to extended periodic windows over which liftings

(samples) are taken in adaptive controllers of the type described

by Lozano et al., supra, for example. Extended horizon liftings

are crucial for control gain reduction in order to allow practical

implementations of control in nonminimum-phase systems. The dis-
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tinction between extended horizon liftings of the present invention

and the prior art will now be described.

Since Lozano-Leal's liftings are distinct from the present

invention in that it utilizes a horizon size of N=2n, where n is

the plant order and N is the length of the window for the liftings,

and the number of elements in the system input equals those in the

system output (i.e., au=ay ), it will be denoted as the "2n-lifting,"

while in the present invention N>n and preferably Na2n-I in a large

class of systems in which au>ay for output tracking (mapping), such

as in feedback control systems, and au<ay for input tracking, such

as in communications systems, and which enjoy the same zero anni-

hilation properties as N=2n. Unlike the special case of Lozano-

Leal's and other prior art liftings, the present invention allows

the use of all extended horizon liftings with N greater than n and

preferably equal to or greater than 2n-i with au>ay for output

tracking (OT) and au<Oy for input tracking (IT). An important

consequence is that such extended horizon liftings lead to plant-

-inverse controllers with significantly reduced control gains.

This overcomes a problem associated with Lozano-Leal's lifting,

where N=2n and a,=ay, which has prevented its use in many appli-

cations of practical interest that the present invention will

reach. To illustrate the present invention, a simulation example

is provided below in which the peak control requirement is reduced

by four orders of magnitude using extended horizon liftings.



F94128 5

i0

It will also be shown that as a dual result, a related class

of extended horizon liftings enables equalization of nonminimum-

phase channels in communication systems. This overcomes the stan-

dard problem of inverting the channel in a stable fashion. In this

invention, the extended horizon property allows channel inversion

by least squares estimation, which provides smoothing in the case
of noise.

As background information, consider a plant input/output
model,

A(z 1)y,=B(z 1)u'

" - (i)
A(z 1):l+_aiz _; _(z 1)=_b_z -_

i =I i =I

15

2O

where the polynomials A and B are assumed to be relatively prime.

It is assumed that b1_0 , so that the polynomial B can be factored

uniquely into the form B(z-1)=z-ab1_(z i) where _(z -I) is a monic

polynomial and d=l is the plant delay. The choice d=l is for

convenience only and is not a fundamental restriction. In the case

that d_l, all subsequent expressions can be appropriately modified

without loss of generality.
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Choose some horizon time N>n. The system of Eq.

iterated to give the following system of linear equations,

Y(k) =AIY(k )+A2Y(k-I )+BIU(k )+B2U(k-I )

where,

(1) is

(2)

10

Tv

J"kN +l I

Y k_+21

Y(k)-- ; U(k)

Yk +NI

IIkN ]

UkN÷I I

• I
• I

IIkN+N-I ]

(3)

15

20

Y(k) = plant output

U(k) = plant input

A I = lower triangular Toeplitz, with first column

[O,-a1,...,-a.,O,...,O] T

A2 = upper triangular Toeplitz, with first row

[O,-al,...,-an,O, • ..,0 ]

B I = lower triangular Toeplitz, with first column

[b_,b2,...,b,,O,...O] T

B 2 = upper triangular Toeplitz, with first row

[O,...,O,b,,...,b2]

25
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Example 1 Let n=3 and N=4. Then Eq. (2) becomes,

5

i0

Y4k+21 =:

Y4k +31

)"4k+4J

Y4k-3

Y4k2

Y4;(I
-cx_ -a 2 -cxll 0 0 0 0,

0 -_3 _21 Oq 0 0 0 Y4k

0 0 a31_2 _i 0 0
Y4k+l

0 0 I-_3 u 2 -a I 0
Y4k+2

Y4k+3

Y4k+4

15

0 0 b 3 b 2 I bl 0 0 0

+ 0 0 0 b 3 I b2 bl 0 0

0 0 0 I b3 b2 bl 0

0 0 0 I 0 b3 b 2 b I

U 4k- 4

U4k-3

U4k -2

U4k- 1

U4k

U4k+l

U4k+2

U4k÷3

2O It is convenient to combine terms involving Y(k) in Eq. (2) and

rearrange to give the following lifting of P. Albertos, "Block

multirate input-output model for sampled-data control systems,"

IEEE Trans. Automatic Control, Vol. 35, No. 9, pp. 1085-1088,

September 1990.

25
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Albertos" Lifting:

Z(k) =AY(k-l )+HU(k) +BU(k-I )

where,

A = (I_AI) -IA2 (5a)

H =(I -A I)-IBI (5b)

I0

15

B= (I-A I)-IB2 (5c)

It is noted that since A I is lower triangular with zeros on the

diagonal, the quantity (I-At) is always invertible. Hence the quan-

tities in Eq. (5) always exist.

Polynomial A is divided into B to give impulse response

sequence {hi},

Ug

B(z -I) =  hiz i (6)
A(z -i) i=i

20

The Markov parameter sequence {hi} is not assumed to be convergent

(i.e., the system may be unstable). Using the Toeplitz structure of

A I and B I and relation, (Eq. (6)), it can be shown that the matrix

H in Eqs. (4) and (5) can be written in terms of the impulse

response parameters,
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H-- 2 hz

in N e m i•.. h2 hlJ

(7)

This is the desired expression for H, i.e., H = lower triangular

Toeplitz, with first column [hz,h2,...,h,]_. Since the delay is

unity by assumption (i.e., d=l), the matrix H has a nonzero diag-

onal (i.e., hl_0), and is always invertible.

STATEMENT OF THE INVENTIO__NN

In accordance with the present invention, an improved method

for providing periodic gain adjustment in plants of irreducible

order, such as for control of electrical, mechanical or chemical

systems or for equalization of communication channels, comprises

the choosing of a horizon time N>n of liftings in periodic input

and output signal windows Pu and py, respectively, where N is an

integer chosen to define the extent (length) of each of the windows

p. and py, and n is the order of the irreducible input/output plant

model given by an equation of the form

A(Z-I)y_=B(z 1)U,

n
n

A(Z 1)=l+_aiz_i; B(z-1)=_bi z i
i =i i =I

25
where polynomials A and B are relatively prime, such that the
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horizon time for liftings have a total length N=m+_+P+q +2n-l, and

in which the number of elements au in the liftings taken from the

input signal is greater than the number of elements oy in the

liftings taken from the output signal for output tracking in

control systems and vice versa (au<oy) for input tracking in

communication systems. The extended horizon liftings for output

tracking over a selected input signal window p_ and a selected

output signal window py are of the form

N

m _ p n q n 1

pu=[0,...,0, i,...,I, p ,I,i,...,I, 0,...,0, 0,...,0]

15

20

25

m _ p q n 1 n

py=[0,...,0 f 0,...,0f P ,0f...,0 , 0,...,0, i,i,...,I]

where m, _, p, n, q, and n-i are elements of the lifting, and mzO

and _z0 are arbitrary, q=O, p e Rp is an arbitrary (or null) 0-i

vector chosen identically in both Pu and py and n>O is the order of

the irreducible plant. If the system is obtained by zero-order

hold digitization of a continuous-time plant, the integer qzO can

be chosen arbitrarily. Since there are m+E zeros on the left of py

and only m zeros on the left of Pu, the number of elements au is

greater than ay for output tracking. For input tracking, the

extended horizon liftings are of the same general form, but now
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there are m+£ zeros on the left of Pu, and only m zeros on the left

of py so that the number of elements au is less than ay.

5

i0

15

20

25

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 graphically depicts partial horizon vectors _ and

using windows Pu and py.

FIG. 2 is a block diagram of a generalized lifting system

model G(pu,py) defined by Equation 19 applicable to control systems

in general.

FIG. 3 illustrates graphically the determination of a small

matrix H, from input and output signal liftings in respective win-

dows Pu and py.

FIG. 4 is a block diagram of a generalized lifting system

model under zero annihilation conditions BS_=O and A(S_)_=0 defined

by Eqs. (27) and (28).

FIG. 5 is a block diagram of a zero annihilation periodic

(ZAP) control law having a closed-loop system arising from the out-

put tracking of extended horizon liftings of Equations (35) and

(36).

FIG. 6 is a pole-zero plot of a 12-state nonminimum phase

plant with a sampling interval T=0.025sec in which poles are repre-

sented by "X" and zeros by "0."

FIG. 7 is a graph of open-loop output response of the plant in

FIG. 6 to an initial condition.



F94128 12

10

15

2O

FIGs. 8a and 8b are graphs of respective output and input

closed-loop response of the plant in FIG. 6 using deadbeat control

with Lozano's 2n-lifting (au=ay) with a vibration damping objective.

FIGs. 9a and 9b are graphs of respective output and input

response using ZAP control of FIG. 5 with an extended horizon input

lifting Pu defined by m=O, _=40, p=O, n=12, q=O, N=63. In this case

au=52 and ay=12, so that au>Oy.

FIG. I0 illustrates application of the present invention to

communications for equalizing a nonminimum phase channel.

DETAILED DESCRIPTION OF THE INVENTION

A class of liftings (N>n) will first be defined by generaliz-

ing the lifting of Albertos (Eq. (4)).

to construct the "small"be useful

follows,

For this purpose, it will

vector _(k) from Y(k) as

Ys(k) _SyY(k)6R _

where Sy6R 5xN is a selection matrix which sifts out ay elements of

Y(k) for inclusion into _(k).

The matrix Sy is most conveniently constructed from a 0-i vec-

tor py. For example, if py = [i,i,0,0] then _(k) e R 2 contains the

first two elements of Y(k) e R 4 and the selection matrix is given

as,

[00:1Sy = 0 1 0
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A systematic method to construct Sy is defined as follows: form a

diagonal matrix from the entries of vector py, and then remove all

rows made up entirely of Os. This construction defines the mapping

W : R_R %x_ for which one can write Sy = W(py). Since py can be

uniquely reconstructed by a logical "or" over the columns of Sy,

the mapping W is one-to-one.

Using the above notation, the following "small" vectors are

defined,

i0 Y,(k) _-SFY(k) ; Sy_W(py)_R°y +N (8a)

Us(k) _-SuU(k); Su_-W(p.)_R °o+N (8b)

15

20

C C

Y_(k) _STY(k ); Sy _W(PF)6R(H°y)÷N (8c)

where py and Pu are specified 0-I window vectors, and D_ is defined

as the 0-1 complement of py. The vector Y_(k) in Eq. (8c) is de-

noted as the complementary output since it comprises all elements

of the vector Y(k) which are not included in _(k).

A formula to reconstruct Y(k) from Y.(k) and Y_(k) is now

derived. First, it is to be noted that the quantity _=[ST,(ST)T]T

is a permutation matrix. Hence its inverse is its transpose, i.e.,

S_F=I, which upon expanding gives

2s sTs,+ (sT ) "s;:z (9)
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Multiplying both sides of Eq. (9) on the right by Y(k) gives the

desired formula,

T c T c

Y(k)=SyY,(k)+(Sy ) Zs (k) (10)

5

10

Example 2. FIG. 1 graphically depicts partial horizon vectors

and Y. for the limited liftings case of n=3 and N=6, as deter-

mined by window vectors pu=[0,1,1,1,0,0] and py=[0,0,1,1,1,0]. In

this case, pyC=[l,l, 0,0,0,1] and one can compute,

I!I°°°!II!°1°°ilsu=W(pu)- 0 i 0 0 ; sy=w(py)= 0 0 1 o
0 0 1 0 0 0 0 1

15

2O

cci 0000 jSy =W(pz) 1 0 0 0

0 0 0 0

In the present invention, a new family of extended liftings

(Na2n-1) will be defined using the notation developed above for

Albertos" N-lifting in Eq. (4). As a key step, it will be assumed

that U(k) is chosen as zero outside the window defined by p..

Mathematically this can be written as,

I T( s.so)u(k)=O (11)

Consider the following nonminimal state-space realization of

Albertos" N-lifting Eq. (4) determined by using the small vectors

in Eqs. (8) and identity Eq. (ii),
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1 I" :I (12)

5

[Y(k) ]Ys(k)=[Sy 0 ][Us(k)
(13)

10

Substituting for the state in the output Eq. (13) gives the alter-

native output equation,

Y(k-i )] T

: ]+s_s,,u.(k)Ys(k) [S_ SIS_] U.(k-l)
(14)

15

For analysis purposes, it is convenient to transform the

open-loop plant using the similarity transformation T where,

Y_(k)jus(k -[Us(k)J

(15)

20 T=[C]; C=[Sr 0]; M=[S_ IIjO]
(16)

ST_W(p[) (17)

25

It can be verified that transformation T is square and invertible.

Furthermore, T is in the form of a permutation matrix which
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reorders the state such that the components of _ appear first, and

the remaining elements follow in the specified order. Since T is a

permutation matrix, the inverse of T is given simply by its trans-

pose (cf., Barnett Matrices: Methods and Applications, Clarendon

Press, Oxford, England, 1990, pp. 374), i.e.,

T-I=Tz=[CT,MT] (18)

Transforming the open-loop dynamics of Eq. (12) by the similarity

transformation of Eqs. (15) and (16), gives rise to a very useful

representation denoted as the Generalized Lifting System Model,

15

Generalized Lifting System Model, G(pu,py ):

Y;(k) I:IS;AS / S;A(S/)" S;IS:IIY:(k-1)

U=(k)J [ o o o J[U=(k-1)
(19)

20

25

It is noted that the generalized lifting G(pu, py) of horizon

length N<n is defined uniquely by the choice of selection windows

Pu and py, from which the matrices Su,Sy,S _ are calculated. The

generalized lifting system model of Eq. (19) is depicted in the

block diagram of FIG. 2. It is seen that Y. and Y_ form two

coupled subsystems which are driven by a common input _. It is
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also noted that the transmission zeros of the transfer function

from _(k) to Y.(k) are affected by the choice of windows Pu and @y.

This is a key feature which will be used to advantage in

applications of the present invention.

The lifting G(pu, @y) generalizes a number of existing results.

For example, Albertos' lifting in Eq. (4), taken from the paper of

Albertos, supra, is equivalent to a choice of periodic windows

(horizon length N) as shown in Eq. (20) for input and output

liftings without regard to the plant order which should a priori be

excluded for consideration in applications of the present

invention.

N

pu=[l,l,...,l,l]

N

r _L

py=[l,l,...,l,l]

(20)

20

The 2n-lifting of Lozano-Leal, supra, is equivalent to the specific

choice of periodic windows of horizon length N=2n as shown in Eq.

(21), which is a special case also to be excluded from the present

invention.
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N

n n-i

pu=[0,1,1,...,l, 0,...,0] (21)

n-I n

py [0,0,...,0, i,i,...,i]

Since each choice of p. and py gives rise to a unique lifting, there

are a total of 2N+I possible generalized liftings over a horizon of

length N. Aside from the liftings of Eqs. (20) and (21), it appears

that none of the other possible generalized liftings have been in-

vestigated in the literature. It will now be shown that many of the

other possible generalized liftings have very useful properties,

particularly those of N>2n-l.

Zero Annihilation

Focus will now be on those liftings for which the transmission

zeros of the (squared down) lifted system lie at the origin. For

notational convenience, we define the "small" matrix H. by,

H,=SyHS$ (22)

The quantity H. appears in many expressions and will play an

important role in subsequent proofs. The matrix H. can be obtained

directly from Pu and py by writing Pu along the top of H. and py along

the side of H. This arrangement is depicted graphically in FIG. 3.
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The matrix H. is then the submatrix defined by the elements of H

having l's along both borders. Two properties of interest

concerning H. are,

Output Tracking (OT) Condition:

_i,zz (23)

Input Tracking (IT) Condition:

t (24)HsH s =I

where I is the identity matrix and the superscript % denotes the

Moore-Penrose inverse. It is noted that both the OT and IT

conditions are satisfied if H. is square and invertible. The OT

condition is intended for gain adjustments in control systems, and

the IT condition is intended for equalization of communication

channels.

The property of placing transmission zeros of the lifted plant

to the origin is characterized in the following:

Lemma 1 (Zero Annihilation) Assume that windows p, and py satisfy,

Zero Annihilation (ZA) Conditions:

Bs$_0 (25)

wh ere,

A(S;)_=O (26)

25 S.W(_.); SyW(_y); ST W(__)
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Then,

(i) the generalized lifting of Eq. (19) has a simplified

representation,

5
Z,(k) S SfZ, k k)_ ( I)+HsUs( , and (27)

i0

15

2O

zf(k)=sfAsTz"(k i)÷s;HsEu,(k) (28)

as illustrated in FIG. 4, and

(ii) Y_ is unobservable from Y, and has stable (deadbeat) dynam-

ics.

Furthermore,

(iii) if H, in Eq. (23) is square and invertible, then the

transmission zeros of the lifted transfer function in Eq. (19) from

to Ya are annihilated (i.e., lie at the origin), and

(iv) if the OT condition Eq. (24) is satisfied then the trans-

mission zeros of the "squared down" lifted transfer function Eq.

(19) from V (where Us=H_V ) to _ are annihilated.

Proof: Results (i) and (ii) follow by substituting the

ZA conditions Eqs. (25) and (26) into Eq. (19), to give,

u_(k) ] [u_(k-1) ]

(k) (29)
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Ys(k-l)

Y,(k)=CHY:(k-I )I

[Us(k-1)j

+DpUs(k ) (30)

where,

Isis7o ilAp=IS;OsT °o ;
(31)

10

15

cp:_,.As7o o]; o,:,. (32)

According to standard definitions (cf., E. J. Davison and S. H.

Wang, "Properties and calculation of transmission zeros of linear

multivariable systems," Automatica, Vol. i0, pp. 643-658, 1974)

values of k satisfying,

det_ p-k/ B I =0 (33)
[ Cp Dp

2O

are the transmission zeros of the transfer function from _(k) to

Y.(k) defined by the state-space model (Ap,Bp,C_p). Consider the

following identity,

det (G) =det (G22) det (G n -G12G2-]G21) (34)

where,
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and the inverse of G22 is assumed to exist. Assuming that H s is

invertible, the identity Eq. (34) can be applied to Eq. (33), which

gives upon substituting Eqs.

-k.I 0

det[X -k.I0

(31) and (32),

0 (x) _'°_

-k.I

which proves (iii). Result (iv) follows by an identical analysis

assuming that the OT condition Eq. (23) holds, and that the simpli-

fied plant (Ap,Bp,Cp,Dp) in Eqs. (29)-(32) has been squared down by

a precompensator Hi-

Lemma 1 is important since it gives conditions which Pu and py

must satisfy for the generalized lifting G(pu, py) to have its

transmission zeros at the origin. All results in Lemma 1 can be

simply understood by comparing the block diagram of FIG. 3 with

FIG. 4 and noting all of the blocks that have vanished under the ZA

conditions. It is seen that Y_ no longer couples into the Ys

c

subsystem. Furthermore, the Ys subsystem has become deadbeat i.e.,

all of the poles of the Y_ subsystem are at the origin. Most

importantly, there is now only one forward path from U. to _.

Clearly something drastic has happened to the system zeros. Rigor-

ously, if H. is square invertible, result (iii) of Lemma 1 states

that the transmission zeros of the transfer function from U.(k) to
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Y.(k) have been placed to the origin (i.e., annihilated). If H. is

not square but the OT condition holds, result (iv) of Lemma 1

states that the zeros the lifted plant "squared down" by a precom-

pensator Hi are annihilated.

Extended Horizon Liftings

The result of using extended horizons for the liftings

introduces a new class of liftings which satisfy the conditions of

Lemma i.

Theorem i A class of generalized liftings G(p,, py) which satisfy

both the ZA and OT conditions is of the following form,

Extended Horizon Lifting (OT Form):

N

m _ p n q n -i (35)

pu=[0,...,0, 1,...,i, p ,i,i,...,i, 0,...,0, 0,...,0]

m _ p q n-i n

py=[0,...,0, 0,...,0, p ,0,...,0, 0,...,0, I,I,...,I]

(36)

2O

25

where elements maO and _aO are arbitrary, q=O, p e Rp is an arbi-

trary (or null) 0-1 vector chosen identically in both p. and py; and

n>O is the order of the irreducible plant of the form given by Eq.

(I). Furthermore, if the plant (system) of Eq. (I) is obtained by

a zero-order hold (ZOH) digitization of a continuous-time system,

the integer qaO can be chosen arbitrarily.
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Proof: By definition, the matrix B in Eq. (5c) has the sparse

form B=[OblX_] where ObeR _x"-"+1is a matrix of all "0" elements, and

XbER "x"-1. By construction of S. from Pu in Eq. (35), the nonzero

elements of S. multiply only elements of 0b in the product BS$.

Hence BS$=O. Likewise, the matrix A in Eq. (5a) has the sparse

form A=[OalX_] where Oa_R "x"-n is a matrix of all "0" elements, and

c 0-i complement of py
X,eR Nx". By construction of S_ from py (i.e.,

C

in Eq. (36)), the nonzero elements of Sy multiply only elements of

O. in the product A(S_) T. Hence A(S_)T=0 and the ZA conditions of

Eqs. (25) and (26) are satisfied.

In order to show the OT condition, first consider the case

where qzO. Then choice of Eqs. (35) and (36) ensures that the small

matrix H. is of the form shown in FIG. 3,

pn

n Ix

(37)

where _r _ Rp_p is lower triangular with a nonzero diagonal (and

hence is invertible), and 9{e R nx" is given by,

(38)

25

Since 3r is full rank, it follows from the special structure of Eq.

(37) that H. is full rank if 9{has full rank. To show that 9{ has

full rank, let (A,b,c) be any minimal (i.e., controllable and ob-
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servable) state-space realization of the transfer function Eq. (i).

The Markov parameters {hi} can be written as hi=cAi ib,i=l,...,_.

Substituting into Eq. (38) gives,

IcA "÷q-lb ••. cA qb 19{= i i

[cA 2"÷q-2b ... cA "÷q Ib]

(39)

10

9{:0A qCf (40)

15

2O

where f is a reversed identity (i.e., I=[el,...,e,] , f=[en,...,el]) '

and O and C are observability and controllability matrices of

(A,b,c), respectively. Since (A,b,c) is controllable and observ-

able, it follows that 0 and C are each full rank. The fact the

system or plant of Eq. (i) is obtained by a ZOH digitization im-

plies that AeR "xn is full rank (i.e., A is a state-transition

matrix). These facts together imply that 9{ in Eq. (37) is full

rank and hence H. is invertible.

If the system of Eq. (i) is not obtained by ZOH digitization,

the matrix A may not be full rank. However, the results still hold

with the restriction that q=0 since in this case A q is replaced by

identity matrix I in relation Eq. (40), which is always full rank.
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Theorem 1 is important because it extends Lozano's 2n-lifting

to a much larger class of liftings which enjoy the same zero anni-

hilation properties, and thus provides greater latitude (extra de-

grees of freedom) in designing control systems. Note that the

extended horizon liftings have total horizon length N=m+_+p+q+2n-1,

which can be readily chosen longer than Lozano's lifting for which

N=2n. Hence the phrase "extended liftings horizon". It will be seen

that the extra degrees of freedom provided by N=k+2n-1, where

k=m+_+p+q, for example, will overcome several difficulties

associated with the 2n-lifting. For convenience, this new class of

liftings is referred to herein as having Na2n-l.

The following result is essentially a "dual" to the previous

theorem.

Theorem 2 A class of generalized liftings G(pu,pz ) which satisfy

both the ZA and IT conditions is of the following form,

Extended Horizon Lifting (IT Form):

N

l

m _ P n q n-i

Pu=[0,...,0, 0,...,0, p ,I,i,...,i, 0,...,0, 0,...,0]

(41)

25

m _ P q n-I n

py=[0,...,0, I,...,i, p ,0,...,0, 0,...,0, I,I,...,i]
(42)

where maO and _aO are arbitrary, q=O, per p is an arbitrary (or null)

0-1 vector chosen identically in both Pu and py; and n>O is the
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order of the irreducible plant Eq. (i). Furthermore, if the plant

or system Eq. (I) is obtained by a zero-order hold (ZOH)

digitization of a continuous-time system, the integer qaO can be

chosen arbitrarily.

Proof: The ZA conditions follow using the same arguments found

in the proof of Theorem i. Consider the IT condition Eq. (24).

Given the lifting Eq. (41), H. has the form,

pn

Hs=n X

_kx

(43)

15

20

From the structure of Eq. (43) it follows that H. has full rank if

both jr and 9{have full rank. The remainder of the proof is identi-

cal to the proof of Theorem i.

Note: Properties of Lozano's 2n-lifting (N=2n) follows directly

from its interpretation as a special case of the liftings Na2n-I in

Theorem 1 and Theorem 2.

Corollary i Lozano's 2n-lifting Eq.(21) satisfies the ZA, OT and

IT conditions.

Proof: The lifting Eq. (21) is equivalent to the special case of

the liftings in Theorems 1 and 2 where m=O, £=0, p=l, p=[0], q=0.
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ADVANTAGES

The advantages of the extended horizon liftings in Eqs. (35)

and (36), and in Eqs. (41) and (42) over Lozano's 2n-lifting are as

follows:

(i) If one chooses _>0 in Eqs. (35) and (36), there are more

control inputs than outputs in the lifted system (i.e., au > ay).

It is shown below with respect to application to plant inverse con-

trol that these extra degrees of freedom can be used to design a

controller which minimizes a quadratic control cost while simul-

taneously satisfying a deadbeat tracking objective. This signifi-

cantly reduces control gains compared with Lozano's lifting.

15

2O

(ii) If one chooses _>0 in Eqs. (41) and (42), there are more out-

puts than inputs in the lifted system (i.e., ay > au). It is shown

below with respect to channel equalization in applications to com-

munications that these extra degrees of freedom can be used to min-

imize a quadratic error when estimating the input from measurements

of the output. This is significant for reducing noise in problems

of nonminimum phase channel equalization. Furthermore, the p vec-

tor can contain additional message information to increase the

channel throughput.

25

(iii) If one chooses m>0 in Eqs. (35) and (36) or Eq. (37), there

is an extra m*T seconds of free time which can be used to perform
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computations (where T is the sampling interval). Since m can be

chosen arbitrarily, the use of extended horizon liftings for either

control or equalization applications is not constrained by realtime

computer limitations. This is particularly useful for adaptive

implementations which involve additional computation.

APPLICATION TO PLANT INVERSE CONTROL

The placement of the transmission zeros to the origin by the

class of extended horizon liftings of the form given by Eqs. (35)

and (36) allows stable invertibility of the transfer function from

(k) to _ (k). A control law which will be discussed next deadbeats

the response _ (k) to follow the desired Yd(k), subject to the mini-

mization of a quadratic control cost.

To derive the desired controller, define the output error as,

E(k)=Yd(k)-Y.(k) (44)

Substituting Eq. (27) into Eq. (44) gives,

S T
E(k)=- yASyYs(k-I) HsUs(k)÷Yu(k ) (45)

Consider the problem of forcing the error in Eq. (38) to zero in a

single step, while minimizing a quadratic control cost penalty,

i.e.,

min U_(k)U.(k) (46)
_,(k)

25 subject to
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E(k)=0.
(47)

In light of the output tracking condition of Eq. (23), this

minimization problem can be solved uniquely (see D.S. Bayard and D.

Boussalis, "Noncolocated structural vibration suppression using

Zero Annihilation Periodic control," 2nd IEEE Conference on Control

Applications, Vancouver Canada, September 13-16, 1993) to give:

Zero Annihilation Periodic (ZAP) Control Law:

o T +yd(k)) (48)U8(k)=Hs(S SyY,(k l)

=K°Y,(k-l )+L °Y4(k)
(49)

where the corresponding feedback gains are defined as,

t T

K°=-HsS_Sy
(50)

L o=Hi
(51)

Here the superscript "o" is chosen to emphasize the fact

that the control nulls (i.e., deadbeats) the output. Also, in

light of the OT condition, H. has full row rank and one can write

Ht=H_(H_) -I (cf., Barnett, supra).

For convenience the ZAP control law is summarized in the block

diagram of FIG. 5. It provides the following result.
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Lemma 2 (ZAP Control) Consider the closed-loop system arising

from the OT extended horizon lifting Eqs. (35) and (36) under ZAP

control Eq. (49). Then,

(i) The quadratic control cost Eq. (46) is minimized at each

stage, subject to the deadbeat tracking constraint Eq. (47),

(ii) All closed-loop poles are at the origin (i.e., the closed-

loop response is deadbeat), and hence Ys(k) converges to Yd(k) in

a single step.

(iii) The closed-loop system is internally stable (e.g., Y_(k) re-

mains bounded).

Proof: Result (i) follows from the OT condition in Eq. (23) and

well known minimum-norm properties of the Moore-Penrose inverse

(cf., Barnett, supra). Now form the closed-loop system from the

simplified lifted plant Eqs. (27) and (28) under ZAP control Eq.

(49),

.(k)J [U.(k-1)J

) (s2)

2O where,

Acl

t T(I -H_s )S_Sy 0

_iS c T t Ty (I-HS, HsSy)ASy 0

t T[ -x.s,As o
; BcI:ISFCHSuTHt

(53)

25
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Results (ii) and (iii) follow by substituting the OT condition

Eq. (23) into Eq. (53), and noting that the resulting closed-loop

matrix is stable with all of its eigen values at the origin.

Result (i) of Lemma 2 is important because it indicates that

control gains associated with using extended horizon liftings of

the class denoted herein as Na2n-i will be significantly reduced

compared to those from using Lozano's lifting (N=2n). Result (iii)

of Lemma 2 is important because it ensures that the complementary

output Y_ remains "well behaved" even though it is not being

controlled directly.

Remark I Instead of deadbeat control, a pole placement scheme

can be obtained by modifying the deadbeat constraint Eq. (47) to

become E(k)=aE(k-1) in which case the ZAP control becomes

U_(k)=K°Zs(k l )+L OZ_(k)-aL OE(k_l ) .

Example 3 As an example, a 12-state nonminimum phase transfer

function is shown in FIG. 6 (pole-zero plot, sampling time T=.025

sec), adopted from the ASTREX flexible structure model(cf. Bayard,

1993, supra and A. Das, J.L. Berg, G.A. Norris, D.F. Cossey, T.J.

Strange III, and W.T. Schlaedgel, "ASTREX - A Unique test bed for

CSI research," Proc. 29th IEEE Conference on Decision and Control,

Honolulu, Hawaii, pp. 2018-2023, December 1990). The open-loop

response to an initial condition is shown in FIG. 7. A simulation

is first run using the deadbeat control Eq. (49) with the Lozano's

2n-lifting, m=O, _=0, p=l, p=[O], n=12, q=O, N=2n=24, and using _=0

(i.e., a vibration damping objective). The response is shown in
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FIG. 8 to reach -3x104 at the output and 500 at the input. As

expected from the theory, the response is deadbeat after a single

horizon. However, this control law is unusable since the units are

in volts, and the allowable range is only ±10 Volts. It is

emphasized that these extraordinarily large responses are typical

of the 2n-lifting due to the fact that the plant is inverted on a

horizon of length N'T=0.6 sec.

In an attempt to get a practical response with the 2n-lifting,

the pole placement control of Remark i is used. The choice a=0.5 is

made to get approximately a 10-second decay time (any slower would

be worse than the open-loop response). The results are simulated

but not shown here since it turns out that the responses are re-

duced 50%, and are still unacceptably large by several orders of

magnitude. The ZAP control using an extended horizon lifting of

the class N_-2n-1 with m=O, _=40, p=O, q=O, n=12, N=63 was tried

next. The results are shown in FIG. 9 where it is seen that both

the input and output are well within the allowable ranges. The

deadbeat nature of the response is also noted, as the vibrations

are damped instantaneously after the first horizon at time T=3sec.

This demonstrates the advantage of using the extended horizon lift-

ings of the present invention instead of Lozano's 2n-liftings.

Application to Channel Equalization

An important problem in communications is that of equalizing

(i.e., compensating for undesired amplitude-frequency response) a

nonminimum phase channel. The usual problem is that the channel
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cannot be inverted in a stable fashion. However, using the input

tracking (IT) extended horizon lifting form of Eqs. (41) and (42),

this problem can be overcome.

Referring to FIG. i0, let _(k) be the sequence of messages to

be sent by a transmitter T, and assume that an IT extended horizon

lifting form given by Eqs. (41) and (42) is used to transmit the

data (i.e., the signal sent is given by U(k)=S$Us(k)). The channel

C is assumed to be a stable linear nonminimum phase transfer func-

tion for a plant of the form given by Eq. (i) with a plant order n.

Then from Theorem 2 and Lemma i, the plant (channel) dynamics given

by Eqs. (27) and (28) are

Zs(k) =AsY,(k-I )+HsUs(k ) (54)

where

As=sMsf. (55)

At the receiver R, the quantity Ys(k)=SyY(k) is measured, and it is

desired to estimate the messages U.(k) which were sent. For this

purpose, an output prediction Ys(k) is formed as,

Ys(k)=AsY_(k-l)*HsUs(k) (56)

and an estimate Us is found by minimizing the least squares cri-

teria,

min(Ys-Ys)T(Y,-Ys) (57)
U s
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Since the IT condition Eq. (24) holds for the extended horizon

lifting, the unique solution to Eq. (56) is given by,

^ t

Us=-Hs (AsYs(k-i) -Y,(k) ) (58)

where one can write t (H_H s _IH_ sinceHs = ) H. has full column rank

(cf., Barnett, supra). It is noted that this dynamical system

represents a stable inversion of the nonminimum phase channel

characteristics. Furthermore, the use of an extended horizon

lifting with _>0 has allowed channel inversion by least squares

which provides smoothing in case of noise. Lozano's 2n-lifting in

this application would not allow smoothing and would be very

susceptible to noise. The use of p in the IT extended horizon

lifting also provides a means for sending additional information

with each packet, to improve the overall throughput.

CONCLUSIONS

A general class of liftings N>n has been denominated as N_2n-1

in order to distinguish from the special case of Lozano (N=2n) and

have been shown to have the same desirable zero annihilation

properties of Lozano's 2n-lifting. In contrast to Lozano's

2n-lifting, all the new liftings include horizons greater than 2n,

i.e., they are of the extended horizon type N>2n-1 and ou>ay or

ay>_. The use of extended horizons of the type N>2n-1 resolves

many difficulties associated with Lozano's 2n-lifting. For

example, a Zero Annihilation Periodic (ZAP) controller is defined

for which the control gains can be significantly reduced as
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compared to Lozano's lifting. This is due to a quadratic control

cost which is minimized simultaneously with the deadbeat tracking

objective. The effectiveness was shown in a simulation example

where the control torque was reduced 4 orders of magnitude.

As a dual result, it was shown that a related class of lift-

ings enables the on-line equalization of nonminimum phase channels

in communication systems. This overcomes the standard bottleneck of

inverting the channel in a stable fashion. Here, channel inversion

is accomplished by least squares estimation which provides smooth-

ing in the case of noise. It is worth noting that this channel

equalization approach can be made adaptive by using standard recur-

sive algorithms since the new liftings are linear-in-the-para-

meters.

It is expected that the present invention (extended horizon

liftings) will be useful in many areas of modern control, neural

control, fuzzy control, adaptive control, communications, adaptive

filtering, signal processing, or other applications where a stable

system inverse is desired but not possible due to nonminimum phase

constraints.

20
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Periodic gain adjustment in plants of irreducible order, n,

or for equalization of communications channels is effected in

such a way that the plant (system) appears to be minimum phase by

choosing a horizon time N>n of liftings in periodic input and

output windows Pu and py, respectively, where N is an integer

chosen to define the extent (length) of each of the windows Pu

and py, and n is the order of an irreducible input/output plant.

The plant may be an electrical, mechanical or chemical system, in

which case output tracking (OT) is carried out for feedback

control or a communication channel, in which case input tracking

(IT) is carried out. Conditions for OT are distinct from IT in

terms of zero annihilation, namely HsH_=I for OT and H_H8 =I of

IT, where the OT conditions are intended for gain adjustments in

the control system, and IT conditions are intended for equaliza-

tion for communication channels.
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